45 YEARS of Life Science book publishing Saras for Science and Biology guide books

Only Book having Questions framed line by line from the Text Book

SOLVED BOOK BACK QUESTIONS SOLVED ADDITIONAL QUESTIONS GOVERNMENT EXAM QUESTION PAPERS

2 SUPPLEMENTS WITH THIS BOOK

FREE SUPPLEMENT - 1

UNIT TEST QUESTION PAPERS - CHAPTER WISE ASSESSMENT TEST QUESTION PAPERS - 6 PTA QUESTION PAPERS - 6

FREE SUPPLEMENT - 2

DEFINITIONS DO YOU KNOW QUESTIONS DIFFERENCES DAYS OF IMPORTANCE DISCOVERIES ABBREVIATIONS LAWS AND THEORIES

SaraS 45 Years in Life Science Book Publishing. Since 1974

Bio-Botany

framed line by line from the Text Book

Solved Book back Questions Solved Additional Questions **Government Exam Question Papers**

SAMPLE

CHAPTERS

This book contains Two Supplement Books

Question Bank Book

Unit Test Question Papers - Chapterwise Assessment Test Question Papers - 4 PTA Question Papers - 6

Short Answer Book

Definitions Differences **Discoveries** Abbreviations Diagrams Diseases

Do you know questions Days of Importance For memory Laws and Theories

Edited by

Dr., Capt. N. Arumugam, M.Sc., M.Phil., Ph.D., FZI, FIAES Gold Medalist, Zoological Society of India, Fellow, Indian Academy of Environmental Sciences, Fellow, Zoological Society of India, Principal and Head (Rtd.), Dept. of Zoology, Vivekananda College, Agasteeswaram, Kanyakumari Dist - 629 701.

Designed by

P. Senthil Kumar, M.Sc., M.Phil., B.Ed. PG Asst. in Biology, SMSV Higher Secondary School, Karaikudi.

SARAS PUBLICATION

114/35G, A.R.P. Camp Road, Periavilai, Kottar P.O., NAGERCOIL, Kanyakumari Dist. - 629 002. Tamil Nadu Website : www.saraspublication.com E-mail: info@saraspublication.com Telephone: 04652 - 265026, 265099; Cell: 098421 23441.

12th Bio-Botany - Line by Line Solved Questions

Copyright Publisher Published by Saras Publication, Nagercoil. Printed by Saras Offset Printers, 1337/5, Sattur Road, Sivakasi - 626 189 **Cell:** 09842323441, **E-mail:**print@sarasprinter.in 45 years in Life Science Book publishing. Since 1974 First Edition : 2020

All rights reserved.

E-mail: info@saraspublication.com

No part of this book may be reproduced in any form, by photostat, microfilm, xerography or any other means, or incorporated into any information retrieval system, electronic or mechanical, without the written permission of the copyright owner.

Price : Rs. 370/-	Authors	Chapters
	K. Kamala Sree	- 1, 4, 5, 9, 10
$\mathbf{Fages}: 592 + 50 + 80 \ (2 \text{ Supplement books})$	M.Sc., M.Phil., B.Ed.	
Published by	R. Jeya Saroj Bagya Rose	- 2
SARAS PUBLICATION	M.Sc., M.Phil., B.Ed., PGDMM	
114/35G, A.R.P. Camp Road, Periavilai,	M.V. Deepa M.Sc., PGDIW	- 3, 8
Kottar P.O., Nagercoil,	& WWT., PGDCR., DMLT.	
Kanyakumari Dist -629 002.	S. Angel Suby M.Sc., BLS., PGDCA	6, 7
Telephone : 04652 265026, 265099		
Cell phone : 09842123441		
Shop online : www.saraspublication.com		

12th Bio-Botany

Π

	SaraS Publication Biosciences Book Publish
Our Titles for 12th Biology	
12 th Bio-Botany + 2 Supplement Books Line by Line Solved Questions	
12 th Bio-Zoology + 2 Supplement Books Line by Line Solved Questions	
12 th Bio-Botany Book Back Solved Questions	
12 th Bio-Zoology Book Back Solved Questions 12 th Botany for Pure Science Line by Line Solved Questions	
12 th Zoology for Pure Science Line by Line Solved Questions	
12 th Bio Botany 1 Mark solved Questions - 1050	
12 th Bio Zoology 1 Mark solved Questions - 1050	
12th Model Solved Question Papers 12	
12 ^{ங்} உயிரி-தாவரவியல் + 2 Supplement Books	
வா வா வனா வடைகள 12 th உயிரி-விலங்கியல் + 2 Supplement Books	
வரி வரி வினா விடைகள்	
12 th உயிரி-தாவரவியல்	
புத்தக வினா விடைகள்	
12" ഉഡിനി-ബിരാങ്കിയര പ്രകേഷം വിത്തം കണ്	
புத்தக் வண்டனைகள் 12 th உயிரி-காவாவியல்	
1 மதிப்பெண் வினா விடைகள்	
12 th உயிரி-விலங்கியல்	
1 மதிப்பெண் வினா விடைகள்	
12 ^{ங்} உயிரியல் விடையளிக்கப்பட்ட	
மாதிரி வினாத்தாள்கள் 12 12th CRSE Biology	
12 CDSE DIOIOgy	

Z 12th Bio-Botany

2 Classical Genetics

Book Back Solved Questions - 1 Mark

 1. Extra nuclear inheritance is a consequence of presence of genes in a) Mitochondria and chloroplasts b) Endoplasmic reticulum and mitochondria c) Ribosomes and chloroplast d) Lysosomes and ribosomes 	5. In Mendel's experiments with gar- den pea, round seed shape (RR) was dominant over wrinkled seeds (rr), yel- low cotyledon (YY) was dominant over green cotyledon (yy). What are the ex- pected phenotypes in the F_2 generation of the cross RRYY x rryy?
 2. In order to find out the different types of gametes produced by a pea plant having the genotype AaBb, it should be crossed to a plant with the genotype <i>a</i>) <i>aaBB b</i>) <i>AaBB c</i>) <i>AABB d</i>) <i>aabb</i> 3. How many different kinds of gametes will be produced by a plant having the genotype AABbCC? 	 a) Only round seeds with green cotyledons b) Only wrinkled seeds with yellow cotyledons c) Only wrinkled seeds with green cotyledons d) Round seeds with yellow cotyledons d) Round seeds with yellow cotyle-dons and wrinkled seeds with yellow cotyledons
a) Three b) Four c) Nine d) Two 4. Which one of the following is an ex- ample of polygenic inheritance? a) Flower colour in Mirabilis jalapa b) Production of male honey bee c) Pod shape in garden pea d) Skin colour in humans 1. a) Mitochondria and chloroplasts	 a) Crossing between two genotypes with recessive trait b) Crossing between two F₁ hybrids c) Crossing the F₁ hybrid with a double recessive genotype d) Crossing between two genotypes with dominant trait
 E 2. d) aabb 3. d) Two 54 4. d) Skin colour in humans 	and wrinkled seeds with yellow cotyledons 6. c) Crossing the F ₁ hybrid with a double recessive genotype

SaraSPublication

	Societaes Book Publisher
 7. In pea plants, yellow seeds are dominant to green. If a heterozygous yellow seed plant is crossed with a green seeded plant, what ratio of yellow and green seeded plants would you expect in F₁ generation? a) 9:1 b) 1:3 b) 3:1 d) 50:50 8. The genotype of a plant showing the dominant phenotype can be determined by a) Back cross b) Test cross c) Dihybrid cross d) Pedigree analysis 9. Select the correct statement from the ones given below with respect to dihybrid cross a) Tightly linked genes on the same chromosomes show very few combinations b) Tightly linked genes on the same chromosomes show higher combinations c) Genes far apart on the same chromosomes show very few recombinations d) Genes loosely linked on the same chromosomes show similar recombinations as the tightly linked ones 	 10. Which Mendelian idea is depicted by a cross in which the F₁ generation resembles both the parents <i>a)</i> Incomplete dominance <i>b)</i> Law of dominance <i>c)</i> Inheritance of one gene <i>d)</i> Co-dominance 11. Fruit colour in squash is an example of <i>a)</i> Recessive epistasis <i>b)</i> Dominant epistasis <i>c)</i> Complementary genes <i>d)</i> Inhibitory genes 12. In his classic experiments on Pea plants, Mendel did not use <i>a)</i> Flowering position <i>b</i>) Seed colour <i>c)</i> Pod length <i>d)</i> Seed shape 13. The epistatic effect, in which the dihybrid cross 9:3:3:1 between AaBb Aabb is modified as <i>a)</i> Dominance of one allele on another allele of both loci <i>b)</i> Interaction between two alleles of different loci <i>c)</i> Dominance of one allele to another alleles of same loci 14. In a test cross involving F₁ dihybrid flies, more parental type offspring were produced than the racombination ture
	offspring. This indicates
7 d 50.50	10 d) Co dominance
$\begin{array}{c} (a) 50.50 \\ (b) Test \ cross \end{array}$	10. a) Co-aominance
(0, 0) Tightly linked genes on the same	11. b) Dominant epistasis
chromosomes show very few	12. c) I but tengin 13 a) Dominance of one allele on another
combinations	allele of both loci
comonantantons	

 a) The two genes are located on two different chromosomes b) Chromosomes failed to separate during meiosis c) The two genes are linked and present on the same chromosome d) Both of the characters are controlled by more than one gene 15. The genes controlling the seven pea characters studied by Mendel are known to be located on how many different chromosomes? a) Seven b) Six c) Five d) Four 16. Which of the following explains how progeny can posses the combinations of traits that none of the parent possessed? a) Law of segregation b) Chromosome theory c) Law of independent assortment d) Polygenic inheritance 17. "Gametes are never hybrid". This is a statement of a) Law of dominance b) Law of independent assortment c) Law of segregation d) Law of random fertilization 	 18. Gene which suppresses other genes activity but does not lie on the same locus is called as <i>a) Epistatic</i> <i>b) Supplement only</i> <i>c) Hypostatic</i> <i>d) Codominant</i> 19. Pure tall plants are crossed with pure dwarf plants. In the F₁ generation, all plants were tall. These tall plants of F₁ generation were selfed and the ratio of tall to dwarf plants obtained was 3:1. This is called <i>a) Dominance</i> <i>b) Inheritance</i> <i>c) Codominance</i> <i>b) 12:3:1</i> <i>c) 9:3:4</i> <i>d) 9:6:1</i> 21. Select the period for Mendel's hybridization experiments <i>a) 1856 - 1863</i> <i>b) 1850 - 1870</i> <i>c) 1857 - 1869</i> <i>d) 1870 - 1877</i> 22. Among the following characters, which one was not considered by Mendel in his experimentation pea? <i>a) Stem</i> <i>Tall or dwarf</i> <i>b) Trichome - glandular or non-glandular</i> <i>c) Seed</i> <i>c) Green or yellow</i> <i>d) Pod</i> <i>c) Inflated or constricted</i>
 14. c) The two genes are linked and present on the same chromosome 15. a) Seven 16. c) Law of independent assortment 17. c) Law of segregation 18. a) Epistatic 	 19. a) Dominance 20. b) 12:3:1 21. a) 1856 - 1863 22. b) Trichome - glandular or non- glandular
30	

SaraSPublication Biosciences Book Publisher

Book Back Solved Questions - 2 Marks

1. Give the names of the scientists who rediscovered Mendelism.

- 1. Hugo de Vries
- 2. Carl Correns
- 3. Erich von Tschermak
- 2. What is back cross?

• Back cross is the **cross** between F_1 offspring with any one of the two parents.

• It is of **two** types:

1. Dominant back cross

- 2. Recessive back cross Test cross
- 3. Define Genetics.

Study of **transmission of characters from parents to offspring.**

4. What are multiple alleles?

• **Two** or **more alternative alleles** of a gene, they **occupy** the **same locus**.

• They control different alternatives of a **single trait**.

• They show intragenic gene interactions.

• Eg. ABO blood group alleles.

5. What is meant by cytoplasmic inheritance?

1. In cytoplasmic inheritance, the traits are governed either by the **chloroplast** or **mitochondrial gene.**

2. Cytoplasmic inheritance is an **extra chromosomal inheritance** or **extra nuclear inheritance**.

3. It is based on the **plasmagenes**.

4. It involves **cytoplasmic organelles** like **chloroplast** and **mitochondria**.

5. Both act as inheritance vectors.

6. It is a kind of **non-Mendelian** inheritance.

Eg. 4 O' Clock plant (Mirabilis jalapa)

Book Back Solved Questions - 3 Marks

1. What is meant by true breeding lines or pure breeding lines/strains?

1. Plants having **stable trait** inheritance from parent to offspring.

2. They undergo **continuous self pollination.**

3. They are produced by the **fusion** of **pollen** and **eggs** of the same plant by **self fertilization.**

4. Pure line breeds refer to **homozygosity.**

5. It has **stable trait inheritance** from **parent** to **offspring.**

6. **Matings** within pure breeding lines produces **offspring** having **specific parental traits.**

7. They are constant in inheritance for **many generations.**

2. What are the reasons for Mendel's successes in his breeding experiment?

1. Applied **mathematics** and **statistical methods to biology.**

2. Applied **laws of probability** in his breeding experiments.

3. Followed scientific methods.

4. Kept accurate and detailed records.

5. Maintained quantitative data of the outcome of his crosses.

6. Experiments were carefully planned.

7. Used large samples.

58

8. Pairs of contrasting characters controlled by factor (genes) were present on separate chromosomes.

9. Parental plants selected were pure breed lines.

10. Purity was tested by self-crossing the progeny for many generations.

3. Name the seven contrasting traits of Mendel.

No.	Character	Dominant trait	Recessive trait
1	Plant height	Tall	Dwarf
2	Seed shape	Round	Wrinkled
3	Cotyledon colour	Yellow	Green
4	Flower colour	Purple	White
5	Pod colour	Green	Yellow
6	Pod form	Inflated	Constricted
7	Flower position	Axial	Terminal

4. Differentiate incomplete dominance and codominance.

r r r r r r r r r r r r r r r r r r r				
Incomplete dominance	Codominance			
1. No blending of alleles.	Simultaneous (joint) expression of			
	both alleles.			
2. F ₁ heterozygote has intermediate	F ₁ heterozygote exhibits dominant			
phenotype between the parents .	parent's trait.			
3. F ₁ hybrid shows presence of 50%	F ₁ hybrid shows presence of both the			
of functional protein from parents .	parental seed proteins.			
4. It proves Mendel's particulate theory	It proves Mendel's Law of segregation.			
of inheritance and law of segregation.				
5. Produces a new phenotype .	Does not produce a new phenotype.			
6. Neither of the alleles are dominant	Both the alleles are dominant.			
7. Eg. Flowers of Mirabilis jalapa.	Eg. Flowers of Camellia.			
5. Explain the law of dominance in mono-	2. The character that is not expressed			
hybrid cross.	in F ₁ generation is called recessive			
1. The character expressed in the F .	character.			
generation of monohybrid cross is	3. Both characters are controlled by			
called dominant character .	factors (alleles).			
	4. Factors occur in pairs.			
	 Incomplete dominance 1. No blending of alleles. 2. F₁ heterozygote has intermediate phenotype between the parents. 3. F₁ hybrid shows presence of 50% of functional protein from parents. 4. It proves Mendel's particulate theory of inheritance and law of segregation. 5. Produces a new phenotype. 6. Neither of the alleles are dominant 7. Eg. Flowers of <i>Mirabilis jalapa</i>. 5. Explain the law of dominance in monohybrid cross. 1. The character expressed in the F₁ generation of monohybrid cross is called dominant character. 			

SaraS Publication

5. When a **pair of factors** are **dis-**7. Both the **parental characters** are similar, one is dominant and the other expressed in \mathbf{F}_2 generation. is recessive. 8. The ratio of F_2 generation is 6. Dominant character is expressed Tall Dwarf : in F₁ generation. 3 1 **Book Back Solved Questions - 5 Marks** 1. Describe dominant epistasis with an 3. The suppressed gene is called hypostatic gene. example. 4. When **both genes** are present, only In dominant epistasis, a dominant dominant epistatic gene determines the gene at one locus suppresses or masks phenotype. the phenotypic expression of another 5. Dominant epistasis was demongene at another locus. strated in summer squash fruit. 1. It is a type of **intergenic gene** 6. The fruit appears in three colours interaction or non-allelic interaction. namely, 2. The suppressing gene is called \square Yellow - 'G' - Hypostatic gene epistatic gene. Yellow fruit Parent White fruit ww GG generation WW gg Х \downarrow Gametes wG /g White fruit F₁ generation WwGg WwGg WwGg F₁ selfed Х Gametes Wg Ŵg Wg wG wG wg F, WG Wg wG wg WWGG WWGg **WwGG** WwGg WG White White White White WWGg WWgg WwGg Wwgg Wg White White White White WwGG WwGg wwGG wwGg wG White White Yellow Yellow WwGg Wwgg wwGg wwgg wg White White Yellow Green White fruit Yellow fruit Phenotypes Green fruit Phenotypic 12 ratio 3 1 Fig. Dominant epistasis in summer squash. Call us at 04652265026 or Whatsapp 9842123441

□ *Green* - 'g'- Hypostatic gene □ *White* - 'W'-*Epistatic gene*

7. Yellow colour is controlled by the dominant gene 'G'.

8. Green colour is controlled by the recessive gene 'g'.

9. White colour is controlled by the dominant gene 'W'.

10. The **dominant 'W'** is **epistatic.** It **suppresses** both **'G'** and **'g'**.

11. 'G' and 'g' are hypostatic.

12. Hence, when dominant 'W' is present, it suppresses both G and g. **White colour** is produced.

13. In the **absence of 'W', 'G'** produces **yellow** and **'g'** produces **green**.

14. Recessive 'w' does not suppress 'G' and 'g'. So 'w' allows yellow or green colour to express.

15. The white fruit with genotype **'WWgg'** is **crossed** with yellow fruit with genotype **'wwGG'**.

16. The \mathbf{F}_1 plants have white fruit and are heterozygous WwGg.

17. F1 plants are selfed.

18. It produces \mathbf{F}_2 with the phenotype ratio of

White	:	Yellow	•	Green
12	:	3	•	1

2. Explain polygenic inheritance with an example.

In polygenic inheritance, several genes combine to determine a single trait.

1. These genes are called **polygenes.**

2. It explains the **inheritance** of **con**-

tinuous traits.

CH.2: Classical Genetics

60

Parent	$\mathbf{K}_1 \mathbf{K}_1 \mathbf{K}_2 \mathbf{K}_2$	$\mathbf{r}_1 \mathbf{r}_1 \mathbf{r}_2 \mathbf{r}_2$	
	Dark red	X White	
F ₁]	$\mathbf{R}_{1}\mathbf{r}_{1}\mathbf{R}_{2}\mathbf{r}_{2}$	
	Ν	ledium red	
F ₂	Genotype	Phenotype	
1	$\mathbf{R}_{1}\mathbf{R}_{1}\mathbf{R}_{2}\mathbf{R}_{2}$	Dark red —	
$2 \neg_{4}$	$R_1 R_1 R_2 r_2$	Medium-dark red	
2-4	$R_{1}r_{1}R_{2}R_{2}$	Medium-dark red	
4	$R_{1}r_{1}R_{2}r_{2}$	Medium red	
1 6	$R_1 R_1 r_2 r_2$	Medium red	15 red
1	$\mathbf{r}_1 \mathbf{r}_1 \mathbf{R}_2 \mathbf{R}_2$	Medium red	1 white
27	$R_1r_1r_2r_2$	Light red	
2^{4}	$\mathbf{r}_1 \mathbf{r}_2 \mathbf{r}_2$	Light red	
1		White	
	$\mathbf{I}_1 \mathbf{I}_1 \mathbf{I}_2 \mathbf{I}_2$	white	1
Fig.	Genetic co	ntrol of colour	
	• 1	1 1	

in wheat kernels. 3. Swedish Geneticist, **H. Nilsson**-

Ehle (1909) first demonstrated polygenic inheritance in wheat kernels.

4. **Kernel colour** is controlled by **two** genes having **two alleles** each.

5. He crossed **two pure** breeding wheat varieties of **two** different colours.

- Dark red - Dominant - $R_1 R_1 R_2 R_2$

- White - Recessive - $r_1 r_1 r_2 r_2$

6. Dark red colour is controlled by **two dominant genes** namely, \mathbf{R}_1 and \mathbf{R}_2 .

7. White colour is controlled by **two** recessive genes namely, \mathbf{r}_1 and \mathbf{r}_2 .

8. In the \mathbf{F}_1 generation, medium red kernel was obtained with genotype $\mathbf{R}_1\mathbf{r}_1\mathbf{R}_2\mathbf{r}_2$.

9. F_1 generation is selfed.

SaraS Publication Biosciences Book Publisher

Parer	nt	Dark Red		White
generation		$R_{1}R_{1}R_{2}R_{2}$	x	r ₁ r ₁ r ₂ r ₂
F_1 gen F_1 gen	neration neration	$\mathbf{R}_{1}\mathbf{r}_{1}\mathbf{R}_{2}$	$ \begin{array}{c} $	$\mathbf{R}_{1}\mathbf{r}_{1}\mathbf{R}_{2}\mathbf{r}_{2}$
F, ger	neration			
	$\overline{O} \mathbf{R}_1 \mathbf{R}_2$	$R_{1}r_{2}$	$r_1 R_2$	$\mathbf{r}_1 \mathbf{r}_2$
$\mathbf{R}_{1}\mathbf{R}_{2}^{+}$	$\mathbf{R}_{1}\mathbf{R}_{1}\mathbf{R}_{2}\mathbf{R}_{2}$	$\mathbf{R}_{1}\mathbf{R}_{1}\mathbf{R}_{2}\mathbf{r}_{2}$	$\mathbf{R}_{1}\mathbf{r}_{1}\mathbf{R}_{2}\mathbf{R}$	${\bf R}_{1}{\bf R}_{1}{\bf R}_{2}{\bf R}_{1}{\bf R}_{1}{\bf R}_{1}{\bf R}_{2}{\bf R}_{1}{\bf R}_{1}{$
$\mathbf{R}_{1}\mathbf{r}_{2}$	$\mathbf{R}_{1}\mathbf{R}_{1}\mathbf{R}_{2}\mathbf{r}_{2}$	$\mathbf{R}_{1}\mathbf{R}_{1}\mathbf{r}_{2}\mathbf{r}_{2}$	$\mathbf{R}_{1}\mathbf{r}_{1}\mathbf{R}_{2}\mathbf{r}_{2}$	$\mathbf{R}_{1}\mathbf{r}_{1}\mathbf{r}_{2}\mathbf{r}_{2}$
$r_1 R_2$	$\mathbf{R}_{1}\mathbf{r}_{1}\mathbf{R}_{2}\mathbf{R}_{2}$	$\mathbf{R}_{1}\mathbf{r}_{1}\mathbf{R}_{2}\mathbf{r}_{2}$	$\mathbf{r}_{1}\mathbf{r}_{1}\mathbf{R}_{2}\mathbf{R}_{2}$	$\mathbf{r}_1 \mathbf{r}_1 \mathbf{R}_2 \mathbf{r}_2$
$\mathbf{r}_1 \mathbf{r}_2$	$\mathbf{R}_{1}\mathbf{r}_{1}\mathbf{R}_{2}\mathbf{r}_{2}$	$R_1r_1r_2r_2$	$\mathbf{r}_1 \mathbf{r}_1 \mathbf{R}_2 \mathbf{r}_2$	$\mathbf{r}_1\mathbf{r}_1\mathbf{r}_2\mathbf{r}_2$
Bell data	shaped ^{park}	ed		

Dark Red wheat kernel colour White

Fig. Polygenic inheritance in wheat kernel colour.

10. \mathbf{F}_1 generation produces four types of gametes.

11. They produce **16 combinations** in the \mathbf{F}_{2} generation.

12. The intensity of the red kernel colour is determined by the number of R genes in the F_2 generation.

i) **Four 'R'** genes give **dark red** kernel colour.

Eg. $R_1 R_1 R_2 R_2 - 1$

ii) **Three 'R' genes** give **mediumdark** red kernel colour

 $\begin{array}{ccc} \text{Eg.} \bullet & R_1 R_1 R_2 r_2 \\ \bullet & R_1 r_1 R_2 R_2 \end{array} \right\} 4$

iii) **Two 'R' genes** gives **mediumred** kernel colour

Eg. -
$$R_1 R_1 r_2 r_2$$

- $R_1 r_1 R_2 r_2$
- $r_1 r_1 R_2 R_2$ 6

iv) **One 'R' gene** gives **light red** kernel colour.

$$\underbrace{\operatorname{Eg.} - \operatorname{R}_{1} \operatorname{r}_{1} \operatorname{r}_{2} \operatorname{r}_{2}}_{-\operatorname{r}_{1} \operatorname{r}_{1} \operatorname{R}_{2} \operatorname{r}_{2}} 4$$

v) **Absence of 'R' gene** gives white kernel colour.

Eg. $r_1 r_1 r_2 r_2 - 1$

13. The number of each phenotype is plotted against the **intensity of red kernel** colour.

14. The data produces a **bell shaped curve.**

15. It demonstrates **continuous** variation in wheat kernel from dark red to white in F_2 generation.

16. It was later discovered that **three** genes are involved in **affecting** the **wheat kernel colour.**

17. Nilsson-Ehle found the ratio of 63 red (many shades) : 1 white in F_2 generation.

18. The phenotypic ratio in the F_2 generation can be shown as

1:6:15:20:15:6:1

Parents	AABBCC Dark red wheat kernal			aal x W ↓ whea	bbcc hite t kerna	1	
F ₁	AaBbCc Intermediate red (selfed)						
1 ₂	1	6	15	20	15	6	1
	Dark	Moderate	Red	Intermediate	Light	Very light	White
	red	red		red	red	red	

63 Red (many shades) : 1 White

Fig. Polygenic inheritance in wheat kernel.

3. Differentiate continuous variation with discontinuous variation.

	Continuous Variation	Discontinuous Variation
	1. Continuous variation shows	1. Discontinuous variation shows
	continuous gradation of a character	discontinuous range of a character
	in a population.	in a population separately.
	2. Quantitative inheritance.	2. Qualitative inheritance
	3. Intermediate forms are present	3. Intermediate forms are absent .
	4. Variations are determined by	4. Variations are determined by
	combined effects of inheritance	inheritance factors only.
	and environmental factors.	
	5. Characters are controlled by many	5. Characters are controlled by one or
	genes (polygenes).	two genes.
	6. Phenotypic expression is affected	6. Phenotypic expression is unaffected
	by environmental conditions.	by environmental conditions.
	7. Eg: Human h <mark>eight</mark>	7. Eg: Style length of Primula
	Skin colour in man	Plant height of garden pea.
ics	4. Explain with an example how single	• Mendel noticed pleiotropy in pea
neti	gene affects multiple traits and alters the	plant, Pisum sativum.
Ge	phenotype of an organism.	In pea plant, a single gene with domi-
cal	◦ It is due to pleiotropy.	nant and recessive alleles controls three
SSi	 In pleiotropy, a single gene controls 	traits such as,
Cla	multiple traits and alters the phenotype	Je Flower colour
5.	of an organism.	Seed colour
ΗC	• This gene is called pleiotropic gene .	Spots on the leaf axil
6 2	• It is an intragenic gene interac-	• One variety of pea plant has the fol-
52	tion or allelic interaction.	lowing traits:

SaraSPublication Biosciences Book Publisher

- ☞ Purple flowers
- ☞ Brown seeds
- The second secon

• Another variety of pea plant has the following traits:

- *The White flowers*
- *Light coloured seeds*
- ☞ No spots on the leaf axils

• When these two plants are crossed, these three traits are **inherited** together as a **single unit**.

• Eg. Sickle cell anemia.

5. Bring out the inheritance of chloroplast gene with an example.

* Inheritance of characters through **chloroplast** is called chloroplast inheritance.

- * It is also called,
 - Extra chromosomal inheritance
 - Extra nuclear inheritance or
 - Cytoplasmic inheritance
- * It involves chloroplast.

* Chloroplast acts as **inheritance vector.**

Example

* 4 O' Clock plant - Mirabilis jalapa

* It has **two** types of **variegated** leaved plants.

- Dark green leaved plants
- Pale green leaved plants

* The colour of variegated leaves is controlled by **chloroplast gene.**

* These two plants are crossed in a **reciprocal** manner.

* In reciprocal cross, the F₁ generation of both the crosses must be **identical** as per the **Mendelian inheritance**.

Fig. A cellular explanation of the variegated phenotype of leaves in Mirabilis jalapa.

* But in **this reciprocal cross**, both the F_1 generations are **not same but different**.

* F_1 plant *has the* character *of female parent plant.*

* It is due to the **chloroplast gene** found in the **ovum** of the female plant.

* The **female gamete** contributes **cytoplasm** during **fertilization**.

* The **male gamete** contributes only **nucleus** and not cytoplasm.

Pale	Dark	Dark	Pale	
green	green	green	green	
leaved x	leaved	leaved	x leaved	
plant	plant	plant	plant	
(Male)	(Female)	(Male)	(Female)	
			\downarrow	
F ₁ Dark green leaved		F ₁ Pale green leaved		
Fig. Chloroplast inheritance.				

Call us at 04652265026 or Whatsapp 9842123441

Chromosomal Basis **3** of Inheritance

Book Back Solved	Questions - 1 Mark	C
Choose the Correct Answer	a) 1 and 2 b) 2	2 and 3
1. An allohexaploidy contains	c) 3 and 4 d)	l and 4
a) Six different genomes	4. Match list I with list	II
b) Six copies of three different genomes	List I	List II
c) Two copies of three different genomes	A. A pair of	i) monosomy
d) Six copies of one genome	chromosomes extra	ý 2
2. The A and B genes are 10 cM apart	with diploid	
on a chromosome. If an AB/ab hetero-	B. One chromosome	ii) tetrasomy
zygote is testcrossed to ab/ab, how	extra to the diploid	
many of each progeny class would you	C. One chromosome	iii) trisomy
expect out of 100 total progenies (a) 25 AP 25 ab 25 Ab 25 aP	loses from diploid	
a) 25 AB, 25 ab, 25 Ab, 25 ab b) 10 AB, 10 ab	D. Two individual	iv) double
c) $45 AB, 45 ab$	chromosomes	monosomy
d) 45 AB, 45 ab, 5 Ab, 5aB	lose from diploid	
3. Which of the following sentences are	$a) A - i, B - iii, \ C - iiii = iii, \ C - iiii = iii = iiii = iii = iiii = iii = iiii = iiii = iiii = iii = iiii = iiii = iii = iiii = iii = iii = iiii = iiii = iiii = iiii = iiii = iiii = iii = iiii = iii = iii = iiii = iiii = iiii = iiii = iiii = iiii = iii = iiii = iii = iiii = iii = iii = iii = iii = iii = iii = i$	- ii, D - iv
correct?	b) $A - ii, B - iii, C - iii, C - iii$	- <i>iv</i> , D - <i>i</i>
a. The offspring exhibit only parental	$\begin{array}{c} c \end{pmatrix} A - u, B - u, C - u, C$	$\cdot i, D - iv$
combinations due to incomplete linkage	$\frac{d}{d} A - iii, B - ii, C - iii$	-i, D-iv
b. The linked genes exhibit some cross-	5. Accurate mapping o	f genes can be
ing over in complete linkage	done by three point tes	t cross because
c. The separation of two linked genes	a) Possibility of since	ale cross over
are possible in incomplete linkage	h) Possibility of dou	the cross over
d. Crossing over is absent in complete	c) Possibility of mult	tinle cross over
Inikage	$2 \rightarrow 2 = 1.4$	
1. c) two copies of three different	(3, c) $(3, ana 4)$	i D iv
2 d A 5 A B A 5 a b 5 A b 5 a B	(4, 0) A - u, D - uu, C - (5, b) Possibility of double	hle cross over
2. u + $3 HD$, + $3 ub$, $3 Hb$, $3 ub$	5.0 10 $sidility 0$ 100	Die Closs Over

	d) Possibility of recombination	10. Changing the codon AGC to AGA		
	frequency	represents a) Missense mutation		
	6. Due to incomplete linkage in maize,			
	the ratio of parental and recombinants are	b) Nonsense mutation		
	a) 50:50 b) 7:1:1:7	c) Frameshift mutation		
	c) 96.4: 3.6 d) 1:7:7:1	d) Deletion mutation		
	7. Genes G S L H are located on same	11. Assertion (A): Gamma rays are		
	chromosome. The recombination per-	generally used to induce mutation in		
	centage between L and G is 15%, S	wheat varieties.		
	and L is 50%, H and S are 20%. The	Reason (R): Because they carry		
	correct order of genes is	lower energy to non-ionize electrons		
	a) GHSL b) SHGL c) SGHL d) HSLG	from atom		
	8. The point mutation sequence for tran-	a) A is correct. R is correct		
	sition, transition, transversion and trans-	explanation of A		
	version in DNA are	b) A is correct. R is not correct		
	a) A to T, T to A, C to G and G to C	explanation of A		
	b) A to G, C to T, C to G and T to A	c) A is correct. R is wrong		
	c) C to G, A to G, T to A and G to A	explanation of A		
	d) G to C, A to T, T to A and C to G	\bigvee d) A and R is wrong		
	9. If haploid number in a cell is 18. The	12. How many map units separate two		
	double monosomic and trisomic num-	alleles A and B if the recombination fre-		
e	ber will be	quency is 0.09?		
anc	a) 35 and 37 b) 34 and 35	a) 900 cM b) 90 cM		
erit	c) 37 and 35 d) 17 and 19	<i>c)</i> 9 <i>cM d)</i> 0.9 cM		
Inhe	Book Back Solved Questions - 2 Marks			
of]	1. What is the difference between missense and nonsense mutation.			
asis	Missense Mutation	Nonsense Mutation		
1 B(1. Codon for one amino acid is changed	Codon for one amino acid is changed		
ma	into a codon for another amino acid .	into a termination or stop codon.		
oso	2. New codon encodes a different	New codon leads to premature		
omo	amino acid.	termination of translation.		
Chr	$6 c) 964 \cdot 36 7 c) SGHL$	11. (<i>b</i> and <i>c</i>)		
3: ((a, b) A to G C to T C to G and T to A	b) A is correct. R is not correct ex-		
ΩH.	9. (No answer) Correct ans: 34 and 38	planation of A and c) A is correct. R		
\mathbf{O}	s. (110 unstron) contect unst st und 50			

9. (No answer) Correct ans: 34 and 38

10. a) Missense mutation 96

planation of A and c) A is correct. R is wrong explanation of A 12. c) 9 cM

the above figure, identify the type of mutation and explain it.

Types of Mutation

- Reverse tandem duplication.

Explanation

* It is a type of **duplication** or **repeat**.

* It is a structural chromosomal aberration, that brings about changes in the number of gene loci.

• A segment in the chromosome is duplicated.

* The duplicated segment is **located immediately** after the normal segment.

• The **order** of the gene sequence is **reversed.**

3. Draw the diagram of different types of aneuploidy.

Book Back Solved Questions - 3 Marks

1. Write the salient features of Sutton and Boveri concept.

Sutton and Boveri independently proposed chromosomal theory of inheritance.

Salient Features

1. **•** Somatic cells of organisms are derived from the zygote by repeated cell division (mitosis).

* These cells consist of **two identi**cal sets of chromosomes. One set is received from **female parent** and the other from **male parent**.

***** These **two chromosomes** constitute the **homologous pair.**

2. Chromosomes retain their **structural uniqueness** and **individuality** throughout the life cycle of an organism.

3. Each chromosome carries **specific determiners** or **Mendelian factors** (genes).

4. Genes or factors are located on chromosomes.

2. What is gene mapping? Write its uses.

Gene Mapping

• Diagrammatic representation of position of genes and related distances between the adjacent genes.

• It is also called **linkage map** and **genetic mapping**

• It is **directly proportional** to the **frequency** of **recombination** between them.

Uses

1. To determine gene order.

2. To identify the **locus** of a **gene.**

3. To calculate the **distances** between genes.

4. To predict **results** of **dihybrid** and **trihybrid crosses.**

5. To understand the overall **genetic complexity** of particular organism.

Book Back Solved Questions - 5 Marks

 When two different genes came from same parent, they tend to remain together.
 (i) What is the name of this phenomenon?
 (ii) Draw the cross with suitable example.
 (iii) Write the observed phenotypic ratio.

(i) The name of the phenomenon is **link-age.** It is **coupling** or **cis configuration**.

(ii) • This phenomenon was observed in **sweet pea** (*Lathyrus odoratus*).

Fig. Coupling or cis configuration of linkage in sweet peas.

98

SaraSPublication Biosciences Book Publisher

• This was reported by William Bateson and Reginald C. Punnett. Experiment

1. William and Reginald crossed **one homozygous** strain of sweet pea having **purple flowers** and **long pollen grains** with another **homozygous** strain having **red flowers** and **round pollen grains**.

2. All \mathbf{F}_1 progenies had purple flower and long pollen grains. This shows that purple flower long pollen was dominant over red flower round pollen.

3. They crossed the F_1 progeny with double recessive parent (red flower round pollen) - test cross.

4. In the F_2 generation, they did not get the expected 1:1:1:1 ratio as in independent assortment.

5. They got the **below result:**

2.

Larger proportion with **purple flowers** and **long pollen**.

Smaller proportion with red flowers and round pollen.

6. They concluded that genes for **purple flower** and **long pollen** were **found close together.**

7. Similarly, genes for **red flower** and **round pollen** were found together.

8. These genes **do not assort independently.** They are referred to as **linkage.**

9. The two **dominant alleles** or **recessive alleles** are present in the **same homologous** chromosome. So, they **inherit** together into **same gamete.**

10. Thus, it shows **coupling** or **cis configuration of linkage.**

iii) Observed phenotypic ratio is,
Purple : Purple : Red : Red
long round long round
7 : 1 : 1 : 7

S.no	Gamete types	Number of progenies
1.	ABC	349
2.	Abc	114
3.	abc	124
4.	AbC	5
5.	aBc	4
6.	aBC	116
7.	ABc	128
8.	abc	360

i) What is the name of this test cross?

ii) How will you construct gene mapping from the above given data?

iii) Find out the correct order of genes.

99

CH.3: Chromosomal Basis of Inheritance

CH.3: Chromosomal Basis of Inheritance

(i) Three point test cross.

(ii) It is represented in the following table:

C No	Comoto tranco	Number of Progenies		Recombinant for loci		
2.110	Gamete types			A and B	A and C	B and C
1.	ABC	349		-	-	-
2.	Abc	114		R	R	-
3.	abC	124		-	R	R
4.	AbC	5		R	-	R
5.	aBc	4		R	-	R
6.	aBC	116		R	R	-
7.	ABc	128		-	R	R
8.	abc	360		-	-	-
	Total	1200		239	482	261
Recombinant frequency (RF) = $\frac{239}{\text{Total number of recombinants}} \times 100$ RF = $\frac{239}{1200} \times 100$ RF = 19.9 % 2. For A and C loci, the recombinants will be Ac and aC.						
Th	The number of recombinants = $114 + 124 + 116 + 128$ - 482					
	$RF = \frac{482}{1200} \times 100$					
	RF = 40.1 %					
3. For B and C loci, the recombinants will be Bc and bC .						
The number of recombinants = 12			124 + 261	5 + 4 + 12	28	
$RF = \frac{261}{1200} \times 100$						
	RF =			6		

SaraSPublication

- All RFs are less than 50%.
- So, the loci are linked.
- * A and C loci show highest RF.
- So, they are **for apart** from each other.
- * B lies between A and C. The genes

are abc.

* Hence genetic map is drawn as a b c 19.9×21.7 mapunits mapunits (iii) The series of series is also

(iii) The correct order of genes is **abc.**

3. If you cross dominant genotype PV/PV male Drosophila with double recessive female, you obtain F_1 hybrid. Now you cross F_1 male with double recessive female.

- i) What type of linkage is seen?
- ii) Draw the cross with correct genotype.

iii) What is the possible genotype in F_2 generation.

(i) Complete linkage is seen.

(ii)

(iii) Possible genotype is **1PV/pv** and 1pv/pv.

4. Explain the mechanism of crossing over.

Crossing over is the biological process that produces new combination of genes by interchanging the corresponding segments between non-sister chromatids of homologous pair of chromosomes.

It involves the following stages:

- 1. Synapsis
- 2. Tetrad formation
- 3. Cross over
- 4. Terminalization

1. Synapsis

* It is the **intimate pairing** between two homologous chromosomes.

* It is initiated during zygotene stage of prophase I of meiosis I.

* Homologous chromosomes are aligned side by side.

* It results in a pair of homologous chromosomes called **bivalents**.

2. Tetrad Formation

• Each homologous chromosome of a bivalent split to form two identical sister chromatids.

• These sister chromatids remain together.

They are attached to the centromere.

• Each, bivalent has four chromatids. Hence, this stage is called tetrad stage.

3. Cross Over

• Crossing over occurs in pachytene

Fig. Mechanism of crossing over.

• Non-sister chromatids of homologous pair make contact at one or more points.

• These points are called chiasmata.

• X-shaped or cross-shaped structures are formed at chiasmata.

• Breaking and rejoining of two chromatids occur.

• This results in reciprocal exchange of equal and corresponding segments between them.

4. Terminalization

• After crossing over, chiasma moves towards the terminal end of chromatids.

stage.

SaraSPublication Biosciences Book Publisher

a) 0.1	b) 1
c) 0.01	d) 10

49. Distance between two linked genes is measured in map units that depict ...

- a) Ratio of crossing over between them
- b) Cross over value
- c) Number of genes between them

d) None of the above.

50. Sex determination in *Silene latifolia* is controlled by in Y- chromosome

- a) Three distinct regions
- b) Four distinct regions
- c) Five distinct regions
- d) Two distinct regions

Additional Solved Questions - Two Marks

1. State chromosomal theory of inheritance.

* Mendelian factors (genes) have **specific locus** on chromosomes.

* They carry information from one generation to the next generation.

2. Define sex linkage.

Linked genes connected together on sex chromosome is called sex linkage.3. What is meant by cis configuration?

* When two **dominant alleles** or recessive alleles occur in the same homologous chromosome, they tend to inherit together into same gamete.

• This is also called **coupling**.

4. What is meant by trans configuration?

* When **dominant** or **recessive** alleles are present on **two different**, but **homologous** chromosomes, they **in**-

49. (b) Cross over value

herit apart into different gametes.

 It is also known as repulsion. Trans Ab/aB

5. What are the types of linkages found by Morgan ?

1. Complete linkage

2. Incomplete linkage

6. On what basis did Morgan classify linkages.

Absence or presence of **new combination of linked genes.**

7. Define linkage groups.

Groups of **linearly** arranged **linked** genes on a chromosome.

8. Write about the linkage groups in organisms with examples.

In any species, the **number** of linkage groups corresponds to the number of **haploid set** of **chromosomes.**

50. (a) Three distinct regions

Eg.

Organisms	Number of		Linkage	
	haploid set of			groups
(chrom	osom	es	
Mucor	-	2	-	2
Drosophila	-	4	-	4
Sweet pea	-	7	-	7
Neurospord	1 -	7	-	7
Maize	-	10	-	10

9. How to construct a gene map?

1. The diagrammatic representation of position and distance of related genes on a chromosome.

2. It is also known as *linkage map*.

3. *Recombinant frequency* - (RF). It is calculated. It is given in *map units*.

4. If the RF value is less than 50%, the genes are *closer* and are *linked*.

5. If the RF value is more than 50%, the genes are *apart* and are *not linked*.

10. Differentiate tetrasomy from tetraploidy.

	Tetrasomy	Tetraploidy
1.	Type of <i>Aneuploidy</i>	1. Type of <i>Euploidy</i>
2.	Addition of <i>a pair</i> of chromosomes	2. Four basic sets of chromosomes
	to diploid set.	in an organism.
3.	Represented as <i>2n+2</i> .	3. Represented as 4x.

11. Differentiate missense mutation from non sense mutation.

	Missense Mutation	Nonsense Mutation
1.	Codon for <i>one amino acid</i> is chan-	1. Codon for <i>one amino acid</i> is changed
	ged into a codon for <i>another</i> <i>amino acid</i> .	into a <i>termination</i> or <i>stop</i> codon.
2.	New codon encodes a <i>different</i>	2. New codon leads to <i>premature</i>
	amino acid.	termination of translation.

12. What is the biological process that takes place during pachytene stage of prophase I of meiosis? Define it. Write the important stages of this process.

Biological Process Crossing over Definition

The process in which, **new combi-112 nation** of **genes** are produced by **in-** ter-changing the corresponding segments between non-sister chromatids of homologous pair of chromosomes.

Stages in Crossing Over

- 1. Synapsis
- 2. Tetrad formation
- 3. Cross over
- 4. Terminalization

SaraS Publication Biosciences Book Publisher

14. What are the two types of crossing over based on the site of occurrence? Write their differences.

Types of Crossing Over

- 1. Germinal crossing over
- 2. Somatic crossing over

Differences

Germinal Crossing Over	Somatic Crossing Over	
1. It occurs in the germinal cells.	It occurs in somatic cells.	
2. It occurs during meiosis.	It occurs during mitosis.	
3. It occurs usually and has universal .	It occurs rarely.	
4. It is also called meiotic crossing over	It is also called mitotic crossing over.	
15. What is meant by bivalents?	16. Explain the second stage in crossing over.	
aligned side by side and result in a pair of homologous chromosomes are	 Tetrad formation is the second stage. Each homologous chromosome 	
called bivalents.	of a bivalent split to form two identi- cal sister chromatids.	

• These sister chromatids are held together by a **centromere.**

• Each bivalent will have **four chro-matids.**

14. Define chiasmata and explain what happens at chiasmata during crossing over.

Chiasmata

• Chiasmata are **points of contact** between **non-sister chromatids** of **homologous chromosomes.**

Changes occurring at Chiasmata

• **Cross-shaped** or **X-shaped** structures are formed.

• **Breaking** and **rejoining** of two chromatids.

• Reciprocal exchange of equal and corresponding segments between them. 15. Define synaptonemal complex (SC).

1. A highly organised structure of chromatids.

2. It is formed in the region of chiasma.

3. It facilitates **synapsis** *and* **chiasma formation.**

16. What is the contribution of Montgomery to the historical development of chromosome theory.

1. He first suggested the occurrence of **distinct pairs** of **chromosomes.**

He concluded that maternal chromosomes pair with paternal chromosomes only during meiosis.
 17. Define recombinants.

* Organism in which new combi-

nation of *characters* are formed due to *crossing over*.

Organism produced by genetic manipulation in rDNA technology.
18. Identify the given diagram A and la-

bel the parts marked as a,b,c,d,e and f.

Ans: A - Structure of Synaptonemal complex

- a. Sister chromatid 1
- b. Sister chromatid 2
- c. Synaptonemal complex
- d. Sister chromatid 3
- e. Sister chromatid 4
- f. Recombination nodules

19. Which is the widely accepted model of DNA recombination?

* Holliday's hybrid DNA model is the widely accepted model.

* This model was proposed by **Robin Holliday** in 1964.

20. Define recombination frequency.

The **percentage** of **recombinant progeny** in a cross.

Recombinant frequency (RF) = $\frac{\text{Number of recombinants}}{\text{Number of offsprings}} \ge 100$

21. What is meant by map unit?

• A map unit (m.u) is the **unit of** distance in a genetic map.

• One map unit is equivalent to **one percent** of **crossing over.**

22. What are multiple alleles?

Three or more allelic forms of a gene occupying the same locus in a given pair of homologous chromosomes are called multiple alleles.

23. What is meant by self-incompatibility?

+ Self incompatibility means, the **pollens** from a plant are **unable** to **ger-minate** on its **own stigma.**

+ It cannot bring about **fertilization** in the ovules of the **same plant.**

+ It is also known as **self-sterility.**

24. Write the characteristics of sexually monomorphic plants?

Plants with following characters are said to be sexually monomorphic.

1. Monomorphic plants produce a **single type** of flowers.

2. Both sex organs are present in the same flower and plant.

3. No separate male and female plants.

4. 94% of flowering plants are monomorphic. Eg. *Hibiscus*.

25. What are dimorphic plants?

1. Dimorphic plants produce **two types** of flowers.

2. They have **separate male and female plants**.

3. Male plants produce flowers with

only stamens.

4. Female plants produce flowers with **only carpels.**

5. The flower may contain either **androecium** or **gynoecium**.

6. **6%** of flowering plants are **dimor**-**phic.** Eg. *Papaya*.

26. How can sex be determined in plants?

Sex can be determined in plants based on the following:

1. Genes

2. Environment

3. Hormones

27. How is sex determination in *Silence latifolia* controlled?

1. *Silence latifolia* is a **dioecious plant** where **male** and **female** plants are **separate**.

2. Sex is determined by **XY system.** Females have **XX**

Males have XY

3. X chromosome plays an essential role in **reproductive development** and **embryogenesis.**

4. **Y chromosome** plays a major role in **sex determination.**

5. Y chromosome has **three sex de-termining regions**, namely:

- * A female suppressor region.
- An early stamen development region.
- * A late stamen development region.

6. None of these regions are necessary for development of **female reproductive** organs.

